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Abstract

In this paper we consider models for noncausal processes consisting of
discrete-time descriptor dynamics and boundary conditions on the values of the
process at the two ends of the interval on which the process is defined. We
discuss the general solution and well-posedness of systems of this type and
then apply the method of complementary processes to obtain a specification of
the optimal smoother in terms of a boundary-value descriptor Hamiltonian
system. We then study the implementation of the optimal smoother. Motivated
by the Hamiltonian diagonalization results for non-descriptor systems, we show
how the descriptor Hamiltonian dynamics can be transformed to two lower-order
systems by the use of transformation matrices involving the solution of two
generalized Riccati equations. We present several examples illustrating our
results and the nature of the smoothing solution and also present equations
for covariance analysis of boundary-value descriptor processes including the
smoothing error. In addition we discuss several open problems and connections
with other related results.
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I. Introduction

The class of descriptor systems was introduced by Luenberger [1] to

describe the dynamics of certain linear systems for which standard state space

representations are not particularly natural or appropriate. Since their

introduction numerous studies have been performed to investigate the

properties of these systems and the solution of control problems for them

(see, for example, [2] - [9], [20], [21] and the references cited therein).

The fundamental property that all of these studies have had to deal with, in

some form or another, is the fact that the system function matrix for such a

system is not proper, leading to impulsive behavior in continuous-time and

giving rise to noncausal responses in discrete-time. The noncausality of

these models makes them a natural choice for modeling spatially (rather than

temporally-)varying phenomena, and in this context it is natural to consider

descriptor models with general boundary conditions rather than with initial

conditions or the special constrained forms for boundary conditions found in

the literature. Indeed, if one considers generalizations of descriptor models

to more than one independent variable, one finds that these models, together

with appropriate boundary conditions, arise in many contexts such as in

describing random fields, electromagnetic problems, gravitational anomalies,

etc.

The investigation of standard (i.e. not descriptor) boundary-value models

in one independent continuous variable was initiated by Krener [12] - [14] who

has investigated many of their fundamental properties. Adams, et al. [10]

developed a general approach to estimation for boundary-value models and
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applied it in [11] to develop efficient estimation algorithms for processes

described by the model introduced by Krener. In this paper we extend our

estimation methodology to two-point boundary-value descriptor systems

(TPBVDS's), i.e. discrete-time descriptor models in one independent variable

and with general boundary conditions. To our knowledge this represents the

first study of descriptor models devoted to estimation, and as we will see,

our analysis uncovers both some important similarities and differences with

estimation problems for standard state space models and several important

problems whose solutions remain for the future. These questions have in fact

inspired the development of a system-theory for TPBVDS's [25], several

elements of which will be used in the present development. Furthermore, in

another paper [15] we use the results developed here in our investigation of

efficient estimation algorithms for random fields describable in terms of a

particular class of boundary-value descriptor systems in two-independent

variables.

In the next section we introduce the class of TPBVDS's and perform some

preliminary analysis. In particular, we discuss the well-posedness of such a

system and a general method of solution for TPBVDS's. In Section III we apply

the results of [10, 26] to the fixed-interval smoothing problem for an

nth-order TPBVDS. As we show, aside from a boundary effect which can be dealt

with separately, the resulting smoother is itself naturally described as

TPBVDS, in this case of dimension 2n. In Section IV we address the question

of implementation of the smoother. Motivated by the "Hamiltonian

diagonalization" results in [11, 22] for non-descriptor systems, we

investigate two procedures for forward-backward diagonalization of the
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smoother equations. These procedures, which are illustrated in Section V,

point out connections with other work on descriptor systems and also lead to

several solved and open problems related to generalizations of causal

system-theoretic concepts to TPBVDS's. These are presented and discussed in

Section VII following our analysis of the smoothing error in Section VI.



II. Two-Point Boundary-Value Descriptor Systems

The TPBVDS considered in this paper satisfies the difference equation

Ex(k+l) = Ax(k) + Bu(k) (2.1)

with the two-point boundary condition

Vox(O) + VKx(K) = v (2.2)

Here u(k) is an mxl input sequence defined on the discrete-time interval

[0, k-1], x(k) is the n-dimensional boundary value process, v is the n-vector

of boundary values, and E, A, B, VO, and VK are matrices of appropriate

dimensions. Furthermore we assume that {E, A} form a regular pencil (i.e.

IzE-AI e O).

As in [2], we can rewrite (2.1), (2.2) as a single set of equations

Vx = !u (2.3)

where

x' = (x'(O),...x'(K)) (2.4a)

u' = (u'(O),...,u'(K-l),v') (2.4b)

-A E 0 .............. 0

O -A E 0 .......... 0

Y = .' . -. . (2.5a)

0.................. 0 -A E

Vo 0 ................ VK

= diag (B,...,B, I) (2.5b)

We see from this immediately that the well-posedness of (2.1), (2.2) is

equivalent to the invertibility of V. Much more can be said about
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well-posedness and the solution of (2.1), (2.2), and we refer the reader to

[25] for details. We limit ourselves here to describing one method for

solving (2.1), (2.2) that provides us with an alternate well-posdness

condition and with a method for the implementation of the smoother developed

in Sections III and IV.

To begin, from Kronecker's canonical form for a regular pencil [17] we

can find nonsingular matrices T and F so that4

FET- (2.6)

-l Ab1

FAT1 = f (2.7)

!0 I

and so that all of the eigenvalues of Af and Ab have magnitudes no larger than

1. Furthermore if IzE-AI has no zeros on the unit circle, then all of the

eigenvalues of Af and Ab are strictly inside the unit circle. In this case we

will say that {E,A} is forward-backward stable.

4The decomposition in [17] splits the pencil zE-A into forward dynamics

corresponding to a pencil of the form zI-Af and backward dynamics

corresponding to z- 1- where Ab is nilpotent. The only difference in (2.6),

(2.7) is that the unstable forward modes of Af have been shifted into the

backward dynamics Ab.
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Define

Xf(k)

I = Tx(k) (2.8)

xb(k)

Then, we obtain

xf(k+l) = Afxf(k) + Bfu(k) (2.9a)

xb(k) = Axb(k+l) - Bbu(k) (2.9b)

where

b&=FB (2.10)

and (2.9a), (2.9b) are asymptotically stable recursions if {E, A} is

forward-backward stable. Finally, given the transformation (2.8), the

boundary condition (2.2) takes the form

(0)]·P..--1.l I f 1 v (2.11)
L'fO:VbOl = + L|fK:bVb3KJ [(K) v (2.11)

VfO.VbO] VO- 1 ff,kiVbk]= VKT 1 (2.12)

Employing the forward/backward representation (2.9) of the dynamics, a

general solution to (2.1), (2.2) is derived as follows. Let xf (k) denote the

solution to (2.9a) with zero initial condition, and let xb (k) denote the



solution of (2.9b) with zero final condition. Then

xf(k) = Afkxf(O) + xf (k) (2.13a)

xb(k) = AbK-kxb(K) + xb (k) (2.13b)

Substituting (2.13) into (2.11) and solving for xf(O) and xb(K) yields

(0)= H l{v - Vf KxfO(K) - VbOxb (M)} (2.14)
xb (K)

where

K. K -1 -1
H = [fo+Vf'KAf :VboAb+VbK] = V0 T (FET1)K + VKT 1(FAT)K

(2.15)

Finally, substituting (2.14) into (2.13) we obtain

xif(k) I f K -1 0 0 fO(k)

1x%.jk)J [- -k H-{V - V KXf (K) - Vb~xb o(o) + [O(k)I

(2.16)

The solution in the original basis can then be obtained by inverting (2.8).

Assuming that {E, A} is forward-backward stable, the solution procedure

is just described consists of stable, forward/backward recursive computations

0 0for xf ,xb followed by the correction for the actual boundary conditions
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given by the first term on the right-hand side of (2.16). Note also that this

procedure also provides us with another necessary and sufficient condition for

the well-posedness of (2.1), (2.2), namely the invertibility of H in (2.15).

This condition is the analog of that described by Krener [12] - [14] for

standard boundary-value problems. Note that, as one would expect, not all

choices of boundary conditions lead to well-posed problems, and the conditions

that V0 and VK must satisfy depend heavily on the structure of E and A. For

example, as is well known, the initial value problem (V0 = I, VK = O) is not

well-posed if E is singular. This can easily be seen from (2.15) or from

(2.5a), since the last block of columns then is not of full rank.
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III. The Optimal Smoother

Consider now a stochastic process x(k) satisfying (2.1), (2.2) (which we

assume is well posed) where u(k) and v are independent, zero mean and

Gaussian, v has covariance Iv, and u(k) is a white sequence with covariance Q.
V

In this section we examine the estimation of x(k) given the interior

observations

y(k) = Cx(k) + r(k), k e [1, K-1] (3.1)

and the boundary measurements

Yb = WOx(O) + WKx(K) + rb (3.2)

Here r(k), rb, u(e), and v are mutually independent, rb is zero mean Gaussian

with covariance l/b, and r(k) is zero mean, Gaussian, and white with covariance

R.

In order to derive the optimal smoother, we introduce notation analogous

to (2.4), (2.5)

y = %ex + r (3.3)

where

y'= [y'(1), y'(2).....y'(K-1), Yb'] (3.4a)

r'= [r'(1), r'(2) ..... r'(K-1), rb] . (3.4b)

b C 0 ........0 o
0 0 C O

T = : (3.5)

0 0 C O

1W 0........ 0 WK



Also, the covariances of u in (2.4b) and r in (3.4b) are given by

Q = diag(Q,...Q, ) (3.6a)

9 = diag (R,...,R, T'b) (3.6b)

Our problem, then is to estimate x given y, and the approach we adopt is

the method of complementary processes introduced in [26] and elaborated upon

in [10, 11]. Specifically, suppose that we can construct a random vector z

that is complementary to y in the sense that (i) it is independent of y and

(ii) the transformation from (u,r) to (y,z) is linear and invertible. Then we

can write x explicitly as a linear function of y and z, and, thanks to (i) can

obtain x simply by setting z to zero. In the present context, since x is

specified implicitly by (2.3), we also obtain and implicit representation for

z. Specifically, as we verify below, z is given by the following

'= £'5k r (3.7)

z = + Q 1u (3.8)

where

k' = [X'(l),.....,'(K),X'(0)] (3.8)

(the reason for our particular choice of labeling of components in (3.8) will

be made clear shortly). Note that (3.7) also has an interpretation as a

TPBVDS, but we defer discussion of this until our related discussion of the

smoother itself.

As a first step in verifying (3.7), (3.8) note that (3.7) is well-posed

since P' is invertible. Next note that the independence of y and z can be

obtained by direct computation:

E{yz'} = E{[W-Blju + r][-u'(' )-l '- lr + Q-u]'}

= :,-1 _ -1 = o (3.9)
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We next show that we can compute x and X from y and z. Specifically, using

(3.8) to eliminate u and (3.3) to eliminate r, we find that (2.1), (3.7) are

equivalent to

=Y _QJ $ X @(3.10)

The matrix on the left-hand side of (3.10) can be shown to be invertible as

follows. Since Y is invertible, we need only show that the Schur complement

D = y' + ,-1 (3.11)

is invertible. Note that

D(y') 1 = I + MK (3.12)

where M = VA,- l > 0 and K = 0° 1 Q3'(5 °')- 1 > 0. The invertibility of D then

follows from the fact that MK cannot have negative eigenvalues. 5Firially, once

we have recovered x and X from y and z, u and r can be obtained from (3.8) and

(3.3), respectively.

Next, by setting z to zero in (3.10) we obtain the implicit equations

defining the optimal smoothed estimate x:

CSP = 0]~ ] - e.fly (3.13)

Sppose = v. Then vKKv vKv, so that 'K v/vKv) 

DSuppose MKv = Xv. Then v'K'MKv = Xv'K'v, so that X = (v'K'MKv'/(v'K'v) > 0.
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This again defines a well-posed TPBVDS, but to obtain the most illuminating

form' of this system requires a permutation of the equations and variables in

(3.13). Specifically, it is straightforward to verify that (3.13) is

equivalent to

£ = T7 (3.14)

where

£ x' = [(x'(0), X'(O)), (x'(1), X'(1)) .. .. (x'(N),X'(N))] (3.15a)

0 0 0 0

. [ bly b ,Ry( .R-(N-1) .(. . ..
0 'Tb Yb WK, "'bl yb

(3. 15b)

0 .0........0 12
11 12

0 - 0 ........ 00

= 0 0 -. & ....... 00 (3.16)

0 0 0 0 -

f 2 0 0 0........0 I22
2122

with

B = ,B .] = (3.17)0 ~-C-A' - 1C -E'31

-A O O O

11 .W b-O1 q] 12 [wbwK 0 (3.18a)

-IT- L0 ] 2
VO - VK 

=21 bW V1 22 = 1 (3.18b)'17b WO VK' b WK E'
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Comparing the form of 9 in (3.16) to that of V in (2.3), we see that

(3.14) is almost a standard TPBVDS except for the top row of equations - i.e.

the fact that 1f1 in (3.16) appears rather than -d and that 112 is present at

all. This is a consequence of the discrete nature of the time index and the

intrinsic asymmetry of the model (2.1), (2.2).6 We can, however, reduce these

equations to a standard TPBVDS by means of a basic technique in the analysis

of boundary-value systems [14,25]. Specifically, we can think of (3.14) as a

TPBVDS with boundary values consisting of (x'(O), X'(O))' and (x'(N), X'(N))'.

Because of the well-posedness of (3.14) it is possible to eliminate some of

the variables from (3.14) by solving for them in terms of the remaining

variables. More specifically, it is possible to move the boundary values

inward by eliminating boundary values at one end of the interval, the other,

or both. One can iterate this process, and in fact this type of recursion

forms the basis for a notion of state for boundary value systems [14,25]. F6r

our purposes here, however, we need only consider a single step of this type.

Specifically, the invertibility of 9 implies that

11

6Note that u(k) is defined on [0, K-I], while x(k) is defined on [O,K].

Referring to [10], it is not possible in the discrete index case to define the

domain on which x and u are defined and the boundary of that domain so that

either the boundary is contained in or disjoint from the domain.
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has full column rank and thus that we can eliminate (x'(O), (0))' as follows.

We construct matrices M 1 and M2 such that [M1,M2] has full row rank and

[M1 .M2 ] 1 = 0 (3.19)

If we then premultiply (3.14) by the following full-rank matrix

o I 0... 0 0

0 0 I ... 0 0

0 o 0... I 0

M1 0 0... 0 M2

we obtain a TPBVDS of a form exactly as in (2.1), (2.2). Specifically, this

computation yields

x(k+l) x(k) 0

_(k+l) A(k) C'R y(k)

with boundary conditions

x(1) x(N)
M1g I) I + Ey 12 + M2-2 2y ,I

1 ~(l) J M h I(N)J

M1WOib yb]+ M2 WKfbyb (3..21)n, f~ -lye



16

By construction we know that this system is well-posed. Also, once we have

computed x(k), X(k), k=l,...,K, we can determine the previously eliminated

boundary values x(O), X(O):

-(0)= D. If11' WTOb-1] + 121 -1 ]

ifxM X(K)21 

I 1 ' - 12- + 21 22] I(K)J I(3.22a)

where

D = [l 11 ' I11 + 21'I21] (3.22b)

As a final comment, we note that on examination of (3.20), (3.21) and the

form of 9 and 4 in (3.17), we see that what we have derived is a

·generalization of the Hamiltonian form of the optimal smoother for causal

systems (see, e.g. [11,22]). This immediately suggests the possibility of

generalizing methods for solving smoothing equations such as diagonalization

of the Hamiltonian dynamics [11,22] to produce forward and backward

recursions. Such an approach is described in the next section.
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IV. Implementation of the Smoother

In this section we discuss several appraoches to solving the smoothing

TPBVDS (3.20), (3.21). One obvious method of solution is the direct

application of the method described in Section 2 for solving general TPBVDS's.

The question that then arises is the construction of the similarity

transformations that block-diagonalize g and d as in (2.6), (2.7). One

obvious answer to this is to use the general procedure in [17] for the

computation of the Kronecher form of (G,4). A second is to consider

generalizations of Hamiltonian diagonalization procedures, which are developed

in the following two subsections. In the first of these we closely parallel

the approach used for non-descriptor systems and are led to descriptor Riccati

equations and decoupled descriptor dynamics. As we will see, this approach

does not always work, and this leads us to a slightly different approach in

Section 4.2 involving a different type of generalized Riccati equation and

producing decoupled non-descriptor dynamics. Open questions remain concerning

existence of solutions to these equations, but as we discuss in this and in

subsequent sections, this approach has much promise and also appears to point

the way to developing the relationship between system - theoretic concepts

such as reachability and observability and properties and eigenstructure of

the smoother.

4.1 Hamiltonian Diagonalization: Method 1

The general concept of Hamiltonian diagonalization is as follows. We

seek two sequences of matrices, M(k) and N(k) so that

M(k)N-l(k+l) = (k) A(k) (4.1)
A f (k)



and

M(k)9N 1 (k) f Eb(k) ] (4.2)
[0 b(k)

In this case the 2n-dimensional descriptor dynamics of (3.20) can be decoupled

into two n-dimensional descriptor systems (coupled, of course, through the

boundary conditions).

The choice of the sequences M(k) and N(k) is far from unique, and the

general algebraic equations that the nxn blocks of M(k) and N(k) must satisfy

are presented in [18] and [19]. In this subsection we present one choice that

is the direct counterpart of the method used in [11] for non-descriptor

continuous-time boundary value processes and that involves descriptor Riccati

equations that have appeared elsewhere in the literature. Specifically,

suppose that P(k) and 6(k) are invertible matrix sequences satisfying,

respectively, the following forward and backward descriptor Riccati

recursions:

EP(k+l)E' = A[P -(k) + C'R- 1C]-A' + BQB' (4.3)

E'e(k)E = A'[ l1(k+1) + BQB'] 1A + C'R 1C (4.4)

In the case of causal systems (with E = I), (4.3) is the recursion satisfied

by the one-step forward prediction error variance, while (4.4) is the
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recursion satisfied by the inverse of the backward filtered error variance.7

Also, define

Z(k) = E'e(k)E + P 1(k) (4.5)

In the causal case and with appropriate choices of initial condition for P(k)

and final condition for e(k), Z(k) is the inverse of the smoothing error

variance.

Define

MIk) = A[p-l(k)+C'R- C] 1

-M( 1k)A'[ -1(k+l)+BQB'] - - Z-l(k)

Z-i(k) P(k)E'

N-l k ) = I (4.7)

((k)Ez-l (k) I

Some algebraic manipulations verify that M(k) and N(k) are invertible if P(k),

8(k), and Z(k) are, and if we perform the computations involved in (4.1),

(4.2) and define

[(k)l A x(k) 
= N(k) I (4.8)

7(k)J L(k)J

7The actual quantities P(k) and e-l(k) have these interpretations only if the
initial and final conditions P(O) and 0(K) are appropriately chosen. In this

case [P 1(k) + C'R 1C] 1 is the forward filtered error covariance, while

e1 (K) +BQB' is the one-step backward prediction error covariance.
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the smoother dynamics (3.20) decouple into

EP(k+l)f(k+l) = A[p-I(k)+C'R-1C]- 1 [f(k)+C'R-l y(k)] (4.9)

P(k)E'n(k) = [P- (k)+C'R-1C]-IA'r(k+l)+Z-l(k)C'R-ly(k) (4.10)

The boundary conditions in the transformed coordinates can be determined from

(3.21), (3.10), and (3.12).

As a simpler alternative one might consider constant transformations M

and N as in (4.6) and (4.7), but using solutions to the steady-state

descriptor Riccati equations

EPE' = A[P-1 +C'R-C]-1A' + BQB' (4.11)

E' 0 E = A'[ - 1 + BQB']-1A + C'R-1C (4.12)

Note that in this case the transformed smoother dynamics

EPf(k+l) = A[p-+C'R - 1C]- 1 [f(k)+C'R-ly(k)] (4.13a)

PE'71(k) = [P-+C'R-1C]- A'~(k+l)+Z -1C'R - y(k) (4.13b)

A A
involves two pencils {E1,A1} = {EP, A[P- +C'R 1C] 

1} and {E2,A2} =

{PE', [P -+C'R- 1C]- 1A'} that are transposes of one another. In this case if

we follow the solution procedure outlined in Section 2.1, if the matrices F

and T1 transform {E1,A1l into the form shown in (2.6), (2.7), then F2 = T1

and T2 = F1 do the same for {E2,A2}.

The descriptor Riccati equations we have introduced have appeared in the

literature. In the case in which E is nonsingular, which was studied by Laub

in [24], it is clear that these are no difficulties in solving (4.3), (4.4) or

equivalent versions not involving inversions of P and 8) nor in obtaining

controllability and observability conditions under which (4.11), (4.12) have

unique positive definite solutions. Furthermore in this case it is also

possible to parallel the approach in [11] (for the non-descriptor case) in
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choosing boundary conditions P(O) and 8(K) for (4.3), (4.4) so that the

boundary conditions associated with (4.10) are minimally coupled. Similarly,

in the case in which A is invertible, we can do something analogous, leading

to a pair of dual Riccati equations, essentially by reversing time (k -* K-k)

thereby interchanging the roles of A and E. While the approach outlined in

this section (or its dual) works when either A or E is invertible,S the

difficulty arises when both E and A are singular. As pointed out by Bender,

singularity can cause equations such as (4.3) to fail to have solutions for

particular initial conditions. Also, as we illustrate through an example in

the next section, when E and A are both singular (4.11), (4.12) have solutions

only in an uninteresting case. What is therefore required is a different

approach. Previous studies of control problems for continuous or discrete

descriptor systems [9], [21], [23] have circumvented this difficulty by

deriving and dealing with lower-order standard Riccati equations (of dimension

equal to the rank of E). In our case, however, we are interested in

diagonalizing the Hamiltonian dynamics. As we develop in the next section,

this is possible if we introduce equations that are not quite standard Riccati

equations but are far closer to them than (4.11), (4.12).

4.2 Hamiltonian Diagonalization: Method 2

In this subsection we focus completely on time-invarint versions of the

transformations (4.1), (4.2). The key to the transformations are the

$Note that e and d are both singular if either E or A is, so that the
procedure in this section does work on a class of nontrivial Hamiltonian
descriptor dynamics. See [27], [28] for investigations of discrete-time
algebraic Riccati equations by examination of the pencil defined by e and s
when E = I.
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generalized Riccati equations

e = A' (Ee-E' + BQB')-IA + C'R -C (4.14)

= A(E'*-1E + C'R-1C)- A' + BQB' (4.15)

Note that these equations are "almost" standard Riccati equations, except for

the presence of E and E' multiplying e - 1 and - 1 in the terms in parentheses.

While there appears to be some asymmetry in the roles played by E and A, this

is an illusion, as can be seen by introducing an additional pair of matrices.

specifically, if we define

S = E-1E' + BQB' (4.16a)

we see that

0 = A'S- A + C'R 1C (4.16b)

Similarly, by introducing

T = E' 1E + C'R-1C (4.17a)

we obtain

% = AT-1A ' + BQB' (4.17b)

Consequently, we can view (4.16) and (4.17) individually as pairs of equations

to be solving for (S,e) and (T,*), respectively. We assume throughout this

section that positive definite solutions for these four quantities exist. As

in the previous section, if either E or A is invertible, we can reduce these

equations to standard Riccati equations and therefore can obtain the usual

type of reachability and observability conditions for existence of such

solutions. Also, as we illustrate in the next section these equations admit

positive definite solutions even in cases in which both E and A are singular.

General conditions for existence and uniqueness of positive definite solutions

remain open, and in Section VII we briefly discuss this and several related

questions.
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Consider next the matrices

[I AT- 1
M = -1 (4.18a)

E -a
N = (4.18b)

0 , E

The invertibility of N is immediate from the invertibility of 0 and the

invertibility of the Schur complement

-9 - E'8-1E

Similarly the invertibility of M follows from the invertibility of -I and of

the Schur complement

I + A'S- 1AT

(which is invertible since T > 0, A'S- 1A > 0 so that the eigenvalues of

A'S 1AT are nonnegative).

It is a straightforward exercise, using (4.16), (4.17) to show that

-1 0I 0
MEN 1 = J (4.19a)

0 A'S-l Eo- 1

-1 E'A 1 O
MiO ~AN J (4.19b)

Therefore, if we premultiply (3.20) by M and make the change of coordinates

6(k) x(k)
i = N NV (4.20)

7 (k) I(k)
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the smoother dynamics are transformed into standard non-descriptor recursions:

6(k+1) = AT 1E' -6(k) + AT 1C'R -y(k) (4.21a)

-1 -1^ -1
7(k) = A'S 1E -I(k+l) + C'R y(k) (4.21b)

with boundary conditions

-1s [6(1)] -1tl 22] 6 (K)]
M 19N J+ [M1 f 12 + M21' 22 ]N L(K

M1 -1 b + M2 1Y(4.22)

Note that (4.21) consists of a forward recursion (a) and a reverse recursion

(b), with coupled boundary conditions (4.22). The approach outlined in

Section II (see (2.13) - (2.16)) can then be used directly to obtain the

solution. Once this is accomplished, we can recover x(k) and A(k), k=l,...,N

by inverting (4.20), i.e. from the relationship

-1 -1 -1
x(k) = [8 + E'* E] [7(k) + E' 6(k)] (4.23a)

A(k) = P -E[ + E' E]I 7(k) - [' + ES-1E']- 6(k) (4.23b)

and then can recover x(O), X(O) from (3.22). Note that since one is generally

interested only in x, it is only necessary to solve for X(1) and X(N) in

(4.23b) in order to be able to determine x(O) from (3.22).
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V. Examples

In this section we first present an example illustrating our smoothing

results for TPBVDS's and then introduce the class of cyclic systems in a

second example.

Example 5.1: As we indicated in the previous section, the case in which

either E or A is invertible can be thought of as a slight generalization of

the causal case (perhaps with time reversal), and consequently both of the

Riccati-like methods of the previous section (or the dual of the method of

Section 4.1) work without difficulty. In this example, we look at a system

for which both E and A are singular and first illustrate the problems with the

method of Section 4.1 and the apparent superiority of the approach in Section

4.2.

Consider the descriptor system with

E = A =

In this case it is not difficult to check that difficulties arise in solving

the time-varying descriptor Riccati equations (4.3), (4.4) or their

time-invariant counterparts (4.11), (4.12). For example, let

P - 1C1 u U2
P11 12 E_ U _
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and consider (4.14) which in this case reduces to

=loJI oU + BQB'

22

which is obviously inconsistent with a positive definite solution for P. Even

if one considers indefinite solutions, we see that none can possibly exist if

BQB' is not diagonal. Indeed the only case in which any solutions exist to

(4.11), (4.12) is when BQB's and C'R C are both diagonal. In this case P and

e are also diagonal, with the positive diagonal element corresponding to the

error covariance of the causal part of the system (the first state component)

and the negative element to the negative of the error covariance of the

anticausal (second state) component. Furthermore, the diagonal nature of BQB'

and C'R-1C implies that independent noises drive each component and

independent observations are available for each -- i.e. the problem reduces to

the trivial and uninteresting case of two completely decoupled systems.

On the other hand, the generalized Riccati equations (4.14), (4.15) admit

solutions in nontrivial cases. For example, if

B = f l Q = 1, C = R = V 

the solutions to (4.14), (4.15) are

al r0 1 1



27

and

S = 3 T T(

This example also illustrates the degeneracy that arises in the dynamic

portion of the smoother for TPBVDS's whenever either E or A is singular.

Indeed in this case (4.21) reduces to

b ol
6(k+l) = y(k) (5.1)

r(k) = | 7(k+l) + y(k) (5.2)

This is of course an extreme example, since the two components, x1 and x 2, of

x are essentially identical white noise sequences (with a sign inversion and a

one unit relative time shift) except for the possible correlation between x(O)

and x(K) introduced by the boundary conditoins. However, while in general the

system matrices in (4.21) will not be nilpotent as they are here, there will

always be some rank deficiency if either A or E is singular.

Finally, let us illustrate the rest of the smoothing solution for this

example. Even in this degenerate case the one time-step delay between x1 and

x2 and the nature of the boundary conditions can lead to a nontrivial form for

the smoother. In particular, suppose that

v o = vK [ 1v 1 (5.3)

-------- ---~1
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1 0 0 0

WO 1 W° K 0 ol b O (5.4)
0 0 10 0 1

L 0 L 1i

The dynamics plus boundary conditions in this case are

x l(k+l) = u(k)

k = 1,..,K - 1

x2 (k) = -u(k)

with x2(0) a unit variance random variable independent of u, and with

x 2 (K) = x 1 ( o ) + u(O)

Referring to (3.18), we have

0 0.0 0

0 -1 0 0 
V11 = =121 0 1 0

,0 1 0 1

1 0 -1 -1 0 0 0 0

0 1 -1 -1 -0 1 0 0
Y21 ' 22 1 0 1 0

00 0 0 1 0 1 0

L0 0 0 1 1 0 0

We can then compute M1 and M2 satisfying (3.19):

1 0 00 0 0 0 0 

00 0 0 0 0 1 0
M1= M2=

0 1 0 1 0 0 0 -1

0 3 1 1 -1 2 0 0
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The boundary conditions (4.22) for (5.1), (5.2) then are

1 000 0 0 0 

0 o o o 6(1) + 0 0 1 a (5.5)

O 1 0 0 (1) 0 0 o o (K)
2 5 2

L3- 0 00 0 23 3 3 o o o

where

a= M1 1y + M2 [K yb b

'7 nb Yb WK "Tb Yb

Then applying (2.16) to (5.1), (5.2), (5.5) (with an adjustment for the

fact that the smoother (5.1), (5.2) runs from 1, rather than 0, to K), we find

that

^ '1 0 0 0 1 0
6(1) = 2 0 a + 2 (1)3 '1

6(k) = y(k-1), 2 < k < K

7(k) = y(k) + [ y(k-1), 1 < k < K-2

7K1^ p O 0 0 0]
'r(K-1) = [0- 0 oJa + y(K-1)

,0 -1 0 0
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0 1 0 0 O O
7(K)= 6 O 15 9 + 6(1)

11 11 11

Finally, using (4.23) we compute

1 ^2 -1 ^

x(k) = {-7(k) + j 6(k)}

k=1,...,K

Elk)=[Y](k) =- [ 6(k)

and, from (3.22)

5 1 3 1
) 8 16 16 4

13 7 1
16 32 32 8

1 0 i
16 4] (1) - 1 x(K)

13 ij
32 8 1?

where

0 'b

11 W -1 21 -1
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Example 5.2: In this example we introduce the class of cyclic TPBVDS's for

which the boundary condition (2.2) takes the special form

x(O) = x(K)

Equivalently we can think of a cyclic system as being defined on [0, K-l] with

the boundary condition

Ex(O) - Ax(K-1) = Bu(K-1)

(so that Y in (2.5a) is block-circulant).

Consider the smoothing problem for such a system when the boundary

measurements are

Yb = Cx(O) + rb

withU bb= R. it is not difficult to check that in this case 9 is also

block-circulant (i.e. 11 = 122 = -d. 112 = 0, 21 = ) so that the smoother

is also a cyclic TPBVDS over [0, K-1] (with no need to move the boundary in

one step as in (3.19) - (3.22)). If we then follow the procedure described in

Section 4.2, we obtain two non-descriptor cyclic systems

6(k+l) = F66(k) + Gay(k) . 6(0) = 6(K) (5.6)

7(k) = F (k+l) + Gy(k) , r(0) = 7(K) (5.7)

where the F's and G's are specified in (4.21) and we have adopted the notation

y(O) = y(K) = Yb'

Obviously the symmetry of the cyclic case leads to some simplifications.

In fact, note that the two systems (5.6), (5.7), including boundary

conditions, are completely decoupled. This greatly simplifies their solution,

which we can write as cyclic convolutions:
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K-1

6(k) = [I-F 6K]
- 1 L F6G 6y(k-

e- 1) (5.8)

e=o

k=O,1,....K-1

K-1

7(k) = [I-F7K]- 1 I F7tGry( k+e) (5.9)

e=o

where we extend y(k) periodically (i.e. y(k+K) = y(k)). The estimate x(k) can

then be computed from (4.23a) again without any need to determine x(O)

separately since we did not need to move the smoother boundary.
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VI. The Smoothing Error for TPBVDS's

Recall from the development in Section III that we obtained the form of

the optimal smoother by expressing x'and X in terms of y and z as in (3.10)

and then setting z to zero. Thanks to the orthogonality of z and y we can

similarly obtain an expression for the smoothing error by setting z to zero in

(3.10):

=-1g 8'~A, 0 (6.1)

where x = x - x, X = X - -. If we then use these relationships, together with

(3.7), (3.8) we obtain

[ -1] U] {= [] -1] [] (6.2)
'C IC ' -X CIq r

As in Section III, this is equivalent to

x(k+l) 1 x(k) B 0 [u(k)] (6.3)

I I=: 1. + (6.3)
-X(k+l)J L-X(k)J C'R r(k)J

k=l,...,N-1

with boundary conditions

[ xtl)l x(N)
M1 + + M2I22 [2 ̂ j

Bu(O) M (64)
= M 1WO,/b r b + M2 WK,/b r b . (6.4)
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Examining (6.3), (6.4), we see that the evaluation of the covariance of

the estimation error x(k) corresponds to the computation of (the upper

left-hand block of) the covariance of the TPBVDS (6.3), (6.4) driven by white

noise (u'(k), r'(k)) and with independent boundary conditions. In the

Appendix we describe one method for performing this computation for the

original TPBVDS introduced in Section II. This calculation is somewhat more

complicated than the corresponding one for causal systems since x(k) in (2.1)

is not Markov and in fact is not independent of future values of u(k). We

refer the reader to [25] for more on the properties and calculation of the

covariance and correlation function of such processes.

We close this section with two final observations. First, note that the

computation described in the Appendix, when applied to (6.3), (6.4) yields the

covariance of x(k) for k > 1. In order to compute the covariance of x(O), we

need to examine the counterpart to (3.22):

[ x(O)l . Bu(O) v

=J D-I 21 w2y-1
X(°). 11 iW b Yb K'b b

x(1)l x(N)

t11 s --() 11 1'2 21 2221 (6.5)

The calculation of the covariance of the left-hand side of (6.5) then involves

the computation of the covariances of and the correlations among the various

random vectors appearing on the right-hand side of (6.5). An analogous

computation is also carried out in the Appendix.
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The second point concerns the diagonalization of (6.2). In particular,

assuming that positive definite solutions exist to (4.11), (4.12), we can

perform analogous steps to those used in Section 4.2 to transform (6.2) into

the non-descriptor, forward and backward pair of equations

-r(k) = A'S-1E -I(k) - A'S- Bu(k) + C'R-lr(k) (6.6a)

6(k+l) = AT 1E'16(k) + Bu(k) + AT 'R r(k) (6.6b)

(with corresponding, and generally coupled, boundary conditions) with x(k) and

-X(k) then obtained from (4.23a, b), respectively, with 7 and 6 replaced by r

and 6.

Equation (6.6) is extremely useful. In the first place, it provides the

forward-backward decomposition needed in the covariance analysis procedure

described in the Appendix. More importantly, it provides the basis for a

system-theoretic investigation of the smoother, the initial parts of which are

developed in the next section.
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VII. System Theoretic Properties of the Smoother

The theory of filtering and smoothing for causal systems includes a rich

set of system-theoretic results related to reachability, observability,

stability, eigenstructure, etc. Consequently a natural and important line of

investigation is the development of a parallel theory for TPBVDS's. While no

such complete theory is available, we can provide an encouraging start.

Consider the descriptor system

Ex(k+l) = Ax(k) + Bu(k) (7.1)

y(k) = Cx(k) (7.2)

There are a variety of notions and definitions of reachability and

observability in the literature (see, for example [7, 25]), but for our

purposes here, we employ the following counterparts to one pair of definitions

used for causal systems.

Definition 7.1: The system (7.1) is completely reachable if [sE-tA:B] has

full rank n for (s,t) = (0, 0). The system (7.1), (7.2) is completely

observable. if

sE - tA]

has full rank n for (s,t) = (0,0).

Note that the conditions for controllability and observability need only

be checked for pairs (s,t) that are eigenmodes9 of the system, i.e. for which

det(sE-tA) = 0.

9We use this definition of eigenmodes as it allows us to capture "eigenmodes
at infinity" (corresponding to a pair (s, 0)) without analytic difficulty.
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Proposition 7.1: The smoothing error descriptor dynamics (6.3) are completely

reachable if and only if (7.1), (7.2) is completely reachable and observable.

Proof: Using the definitions of e and d in (3.17) we see that (6.3) is

completley reachable if and only if

sE+tA -sBQB' B 0

-tC'R-1C -sA'-tE' 0 C'R-

has full rank. Multiplying on the right by the invertible matrix

I 0 0 0

0 I 0 0

0 sQB' I O

tC 0 O I

yields

sE+tA O B O

0 -sA'-tE' 0 C'R -

from which the proposition follows immediately.

One result that we conjecture is true is that, as with causal systems and

standard Riccati equations, completely reachibility and observability should

imply existence and uniqueness of positive definite solutions to the

generalized Riccati equations (4.14), (4.15). One would also expect that
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these conditions would imply filter stability. We can prove one result along

these lines.

Proposition 7.2: Suppose that positive definite solutions exist to

(4.14) and (4.15), and suppose also that (7.1), (7.2) is completely reachable

and observable. Then the smoother is forward-backward stable.

Proof: What we wish to examine is the stability of (6.3) or,

equivalently, (6.6a) and (6.6b). For the latter equations we can write down

standard Lyapunov stability equations:

P5 - (AT-E'-)P 6(AT
- 1E' -I )' = BQB' + AT-1C'R-1 CT-1A' (7.3)

P - (A'S E )P (A'S-E1)' = AS-1BQB'S-1A + C'R-1C (7.4)

By Proposition 7.1, (6.3) is completely reachable, and therefore (6.6a) and

(6.6b) are each completely reachable. Therefore the forward-backward

stability of (6.6a) and (6.6b) is equivalent to the existence of

positive-definite solutions to (7.3), (7.4). However, examination of (4.16)

and (4.17) shows that the solutions to (7.3), (7.4) are

Pa 9 Pa = (7.5)

which yields the result.

This result deserves some comment. First, recall from Section II that

the construction of the Kronecker canonical form is one general method for

constructing a forward-backward stable decomposition of a general TPBVDS.

What Proposition 7.2 describes is a second-way in which to accomplish this for

Hamiltonian TPBVDS. Second, given what we know about the causal case, it is

not surprising that there is a close connection between generalized Riccati

equations and Hamiltonian eigenstructure. Indeed one might expect there to be

a generalized Hamiltonian eigenvector approach to solving these equations that



39

is analogous to the popular method for standard Riccati equations [27, 28],

Such a development remains for the future, but we can derive a related result:

Proposition 7.3: If (so, to) is an eigenmode of the pencil {(, 4,) then

so is (t o0 so)

Proof: Note first that if (s o, O) is an eigenmode, i.e. if

det(g) = det -B = 0
0 -A' J

then (0, so) is also an eigenmode, i.e.

det(s) = det [ 1 ]= 0
_'R C E'

Consider then any eigenmode (sO, to) with so, t0O•. The following

computation then shows that (to, sO) is also an eigenmode:

det(t0o-s0 4) = det(t0o'-s0 A')

= det 0(/tol '-so ')
1/s0 I J t0 I 0

= det (sog-t S) = 0

Note that this is the generalization of the usual reciprocal symmetry of

Hamiltonian eigenvalues. From this result we can immediately deduce that the

system matrice AT 1E' - 1 and A'S 1E8 1 associated with the forward-backward

smoother decomposition have identical eigenvalues.



40

Finally we present one additional result.

Proposition 7.4: The pencil (&, d) is forward-backward stable if (E, A) is.

Proof: We need to show that (l,ejG) is not an eigenmode of (, s) for any w.

Consider

·E-eJgA -BQB'

-eR= CR1Cej -A'+eJWE' (7.6)

Since (E, A) is forward-backward stable

F = E - eJWA

is invertible. Therefore the invertiblity of (7.6) follows if we can show

that

I H + C'R- 1Cr-lBQB'

(where "H" denotes conjugate transpose), or equivalently I + MK is invertible,

where

M = C'R-1C , K = (r-B)Q(r- B)

This follows from the positive semi-definiteness of M and K and the consequent

nonnegativity of the eigenvalues of MK.

This result roughly corresponds to the causal result stating that the

Kalman filter is stable if the original system is, independent of any

controllability and observability results. What we conjecture is also true is

a blending of Propositions 7.2 and 7.4, namely that the smoother is

forward-backward stable if the system (7.1), (7.2) is forward-backward
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stabilizable and detectable, i.e. if [sE-tA:B] and [sE'-tA':C'] have full rank

for all eigenmodes such that Is/t[ = 1.
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VIII. Conclusions

In this paper we have investigated the optimal estimation problem for

two-point boundary-value descriptor systems (TPBVDS's). Using the method of

complementary processes we developed a generalization of the Hamiltonian form

of the optimal smoother for causal systems. This genrealized Hamiltonian

system is itself a TPBVDS. In addition, we have generalized the notion of

Hamiltonian diagonalization as a method for reducing the smoother to two

systems of lower order. Both of the approaches described involve

generalizations of standard Riccati equations. One of these, corresponding to

descriptor Riccati equations that have appeared in the literature, is shown to

work only in certain cases and is not appropriate when the system dynamics are

intrinsically acausal, i.e. when both system matrices E and A are singular.

However, our second approach, involving what we call generalized Riccati

equations, appears to offer much promise. Indeed we have illustrated that it

does provide a viable approach in the acausal case. Furthermore, the results

presented in Section VII indicate that there is likely to be a complete system

theory for these new Riccati-like equations and the associated generalized

Hamiltonian system.

There are numerous open questions raised by the work described in this

paper. In the previous section we indicated several of these, namely

existence and uniqueness conditions for the generalized Riccati equations,

Hamiltonian eigenvector solutions to these equations, and weaker stability

conditions involving stabilizability and detectability. Also, an important

question is the relationship of the solutions of these Riccati equations to
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the estimation error covariance, whose computation we can presently describe

only in'the mechanical manner given in Appendix B. In addition, there are

other important questions related to alternate notions of stability and weaker

concepts of controllability and observability that make sense for TPBVDS's and

that are developed in [25]. For example, consider the cyclic system described

in Section VI. Such a system can be thought of naturally as living on a

discretized version of the circle. Forward-backward stability in this case

corresponds to clockwise and counter-clockwise staiblity. An alternate notion

of recursion developed in [25] involves computations that begin at one point

and proceed simultaneously in clockwise and counterclockwise directions until

the entire circle is covered. In this case stability would correspond to

convergent behavior as the radius of the circle grows without bound. As

described in [25] it is possible to develop a stability theory and in fact

generalized Lyapunov methods along these lines. The implications of these

concepts for the smoother represents another intriguing line of investigation.
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Appendix: Covariance Analysis for TPBVDS's

In this appendix we develop formulas for covariance analysis of TPBVDS's.

As a starting point for this computation, we assume that our TPBVDS has been

placed in the forward-backward form given in (2.9), (2.11). The general

solution for this system is given in (2.16). Given the independence of the

boundary value v and the white sequence u(k), we see that the covariance of

x(k) can be expressed in terms of the covariance, IT , of v and the three

quantities

P O(k) = E[xfO(k)xf (k)'] (B.la)

PbO(k) = E[xb (k)xbO(k)'] (B.b)
0 0 0 (B.lc)

PfbO(nk) = E[xf (n)xb(k)'] (B.c)

The computations of these quantities are straightforward:

Pf (k+l) = AfPfO(k)Af' + BfQBf' Pf (O) = 0 (B.2a)

Pb (k-l) = AbPb (k)Ab + BbQBb PbO(K) = 0 (B.2b)

and

, n < k

PfbO(n,k) = (B.2c)

| fb (n)(Ab')n-k - Afn- fb(k) , n > k

where

fb 0(k+l) = AfTfb (k)Ab ' + BfQBb' Ifb0(0) = 0 (B.2d)

Given these quantities, we can now determine an expression for

xf(k)

2(k) = E { (k) [xf'(k), xb'(k)]} (B.3)
b J(k) 
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2(k) = G(k)tVG' (k) + G(k) (k) + 4' (k)G'(k) + G(k)AG' (k)

+ [0 bkl (B.4)

Pbo (k)

where

G(k) = AbKk H- (B.5)

K-kp £ 0 0 kO
+(k) =- Vf K[Af -PfO(k).PfbO(Kk)] + Vbo[Pfb (kO)Ab %kpb (k)]

(B.6)

Pf (K) fb (K.0)] (fK
~ fK:iVb.o ~[~f(K,)o O o (0)

L fb (K,O)' PbO(O) | IJ (Bb7)

As mentioned in Section 6, the computation of the error covariance at the

initial point in the interval of interest involves an additional computation.

In the remainder of this Appendix we describe the corresponding calculation

for (2.9), (2.11). Specifically, suppose we would like to compute the

covariance of

Xf (O)1 r Xf(K)1
= N + N2 [f( + N3 (K) (B.8)

Lxb(O)! X (K)

- --~p -I~`"~""~""" ~I ~ ~ l~~`~~---b
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where f is a zero-mean random vector correlated with the boundary condition v

but independent of u. Let

E[ff'] = Py Efv''] = P Em'] = P (B.9)

Then, with the help of (2.16) we have

P -NPN N [Pf(O) + N Pf(K) 0 N
Pri = NlEN1 + N2 tO Pb(O)J N2' +N ° Pb(K) N3

77 1 2 0 Pb(O) 2 3 0 Pb(K)

+ N1PfvG'(O)N2 ' + N2G(O)Pfv N1' + N1PfvG'(K)N3'

N3G(K ) vN 1 + N2P (K,O)N3' + N3P(K,O)N 2 (B.10)

where

f(n)

P(nk) E xb(n) [xf '(k) xb'(k)]} , n > k (B.1)

can be calculated in the same manner as 2(k):

P(n,k) = G(n)TvG'(k) + G(n)*(k) + ' (n)G'(k)

+ G(n)AG'(k) + f f 1 (B.12)

0 Pb (n)(Ab )n-k
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